0. Let (x',y') be the smallest solution (i.e.having smallest A=x'+y'sqrt(d)). Lagrange showed'/> Notes on Hallgren's efficient quantum algorithm for solving Pell's equation
首页> 外文OA文献 >Notes on Hallgren's efficient quantum algorithm for solving Pell's equation
【2h】

Notes on Hallgren's efficient quantum algorithm for solving Pell's equation

机译:关于Hallgren有效量子算法求解pell的注记   方程

摘要

Pell's equation is x^2-d*y^2=1 where d is a square-free integer and we seekpositive integer solutions x,y>0. Let (x',y') be the smallest solution (i.e.having smallest A=x'+y'sqrt(d)). Lagrange showed that every solution can easilybe constructed from A so given d it suffices to compute A. It is known that Acan be exponentially large in d so just to write down A we need exponentialtime in the input size log d. Hence we introduce the regulator R=ln A and askfor the value of R to n decimal places. The best known classical algorithm hassub-exponential running time O(exp(sqrt(log d)), poly(n)). Hallgren's quantumalgorithm gives the result in polynomial time O(poly(log d),poly(n)) withprobability 1/poly(log d). The idea of the algorithm falls into two parts:using the formalism of algebraic number theory we convert the problem ofsolving Pell's equation into the problem of determining R as the period of afunction on the real numbers. Then we generalise the quantum Fourier transformperiod finding algorithm to work in this situation of an irrational period onthe (not finitely generated) abelian group of real numbers. These notes are intended to be accessible to a reader having no prioracquaintance with algebraic number theory; we give a self contained account ofall the necessary concepts and we give elementary proofs of all the resultsneeded. Then we go on to describe Hallgren's generalisation of the quantumperiod finding algorithm, which provides the efficient computational solutionof Pell's equation in the above sense.
机译:佩尔方程为x ^ 2-d * y ^ 2 = 1,其中d是无平方的整数,我们寻求正整数解x,y> 0。令(x',y')为最小解(即最小A = x'+ y'sqrt(d))。 Lagrange表明,可以轻松地从A构造每个解决方案,因此给定d就足以计算A。已知A可以在d中成指数增长,因此只需在输入大小对数d中写下A,我们就需要指数时间。因此,我们引入了调节器R = ln A,并要求R的值达到n个小数位。最著名的经典算法具有次指数运行时间O(exp(sqrt(log d)),poly(n))。 Hallgren的量子算法在多项式时间O(poly(log d),poly(n))中给出结果,概率为1 / poly(log d)。该算法的思想分为两部分:使用代数数论的形式主义,将求解Pell方程的问题转换为确定R为实数上的函数周期的问题。然后,我们推广了量子傅里叶变换周期发现算法,以在非理性周期的这种情况下对(不是有限生成的)阿贝尔实数组工作。这些注释旨在供不熟悉代数数论的读者阅读;我们对所有必要的概念进行了独立介绍,并对所有需要的结果给出了基本的证明。然后,我们继续描述量子周期发现算法的Hallgren推广,从上述意义上讲,它提供了Pell方程的高效计算解决方案。

著录项

  • 作者

    Jozsa, Richard;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号